Pigeonpea has gained popularity in semi-arid areas of eastern and central Zambia as a source of food and nutritional security. It also provides multiple benefits to cropping systems due to its ability to fix atmospheric nitrogen, nutrient recycling from deeper layers, inter-cropping compatibility with both cereals and legumes, soil and water conservation on sloppy lands and source of fuel wood.

Recent drought spells in Zambia resulted in farmers losing their maize crop. Intercropping with pigeonpea offers them an insurance against rainfall deficit both in quantity and spread during the crop growing season. Although the farmers in Zambia are aware of the beneficial effects of this multi-purpose legume crop, most of them continue to grow old, very long duration varieties that are low yielding and susceptible to Fusarium wilt under farmers’ practice conditions. However, only three high yielding were released earlier (1-long duration and 2-medium duration) by ZARI do not reach the smallholder farmers in Zambia, besides these being highly susceptible to insect pests.

The medium duration and pest tolerant pigeonpea cultivar was released in Zambia as ICEAP 01551 MPPV 4 for cultivation in semi-arid regions of Zambia. The variety is already popular with farmers who are easily able to access its seed whose area under cultivation is expected to increase over the next couple of years through key partners.

This innovation contributes to SDG 1 “To end poverty in all its forms, everywhere” SDG 2 “End hunger, achieve food security and improved nutrition and promote sustainable agriculture”. This innovative cultivar has been taken up by users, as a Stage 4 and Maturity Level 3 innovation, i.e., policy and/or practice changes influenced by these new methods have led to adoption or impacts at scale or beyond the direct CGIAR sphere of influence. Among others this is evidenced by smallholder farmers in Eastern Zambia growing MPPV 4 as a climate-resilient variety in cereal-based cropping systems to mitigate effects of drought and improve soil health through biological Nitrogen Fixation and Phosphorus -mobilization through root exudates.

http://gldc.cgiar.org